Convex Polytopes and Enumeration

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Polytopes to Enumeration

In the problem session you saw that v-e+f=2 for 3-polytopes. Is something similar true in higher dimensions? Are there other restrictions on the number of faces of each dimension? What is the most number of faces in each dimension if we fix the number of vertices and dimension? The least? What if we fix other numbers of faces in random dimensions? Notice that all of these questions involve coun...

متن کامل

Convex Polytopes

The study of convex polytopes in Euclidean space of two and three dimensions is one of the oldest branches of mathematics. Yet many of the more interesting properties of polytopes have been discovered comparatively recently, and are still unknown to the majority of mathematicians. In this paper we shall survey the subject, mentioning some of the most recent results, and stating the more importa...

متن کامل

Enumeration of 2-Level Polytopes

A (convex) polytope P is said to be 2-level if for every direction of hyperplanes which is facet-defining for P , the vertices of P can be covered with two hyperplanes of that direction. The study of these polytopes is motivated by questions in combinatorial optimization and communication complexity, among others. In this paper, we present the first algorithm for enumerating all combinatorial t...

متن کامل

Enumeration on words, complexes and polytopes

This thesis presents four papers, studying enumerative problems on combinatorial structures. The first paper studies Forman’s discrete Morse theory in the case where a group acts on the underlying complex. We generalize the notion of a Morse matching, and obtain a theory that can be used to simplify the description of the G-homotopy type of a simplicial complex. The main motivation is the case ...

متن کامل

Convex polytopes and linear algebra

This paper defines, for each convex polytope ∆, a family Hw∆ of vector spaces. The definition uses a combination of linear algebra and combinatorics. When what is called exact calculation holds, the dimension hw∆ of Hw∆ is a linear function of the flag vector f∆. It is expected that the Hw∆ are examples, for toric varieties, of the new topological invariants introduced by the author in Local-gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 1997

ISSN: 0196-8858

DOI: 10.1006/aama.1996.0505